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Barnes-Hut tree code: accelerated N-body field-solver

= Goal: Compute geometrically complex N-body interaction, many particles, high dynamic range
in density distribution:
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= Nature of the interaction enables multipole expansion: %\
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= Multipole acceptance criterion (MAC) to decide if multipoles need resolving
= Helped by a tree-structure to ‘combine particles spatially’, efficient organisation, load-balancing

Net result: reduce complexity from O(N?) to O(N log(N))

J. Barnes & P. Hut, Nature (1986)
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PEPC tree code: a potted history

Developments and applications at the Jilich Supercomputing Centre

Serial, recursive BH : Muld-physics
Laser-ion frontends: fusion Warm dense
treecode for plasma :
& astrophysics acceleration plasmas, vortex matter
fluid, SPH

1998

MPI oct-tree, 1000 Load balancing, MPI/pThreads, 1.8M
8k cores on BG/P; threads on BG/Q;
cores on BlueGene/L . .
neighbour search parallel-in-time
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Magnetic fields, impact
lonization; tokamak
plasma formation

MPI/OpenMP, CI,
GitLab, Zenodo,
repositories

Community

applications:

Fusion, Solar
System

GPU port; implicit
integrators; neural
operator field-solver
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Performance tuning
Parallel scalability of single & dual tree algorithms on JUQUEEEN

64 billion
Hybrid O(NlogN) algorithm particles Dual-tree O(N) algorithm
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B. Steinbusch, M.-L. Henkel, M. Winkel, PG, Advances in Parallel Computing 27, (2016)
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PEPC Framework

Frontend Applications

pepc-a

[ lon Acceleration

N

pepc-kh

[Plasma Instabilitie
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pepc-g

[Vartex,, y,,,m,cs}_,
n

: [ Stellar Disc Evol.

[

Tree-Code Algorithm
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Tree Data Structures
Parallel Tree Buildup
Parallel Tree Traversal

Load Balancing

-
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Utils:
VTK-10, Diagnostics,
Benchmarking, ...

M

Interaction-
Specific Modules

Accelerator
Dispatcher M

N ( N

<-

| |
1 R
“—'E 2D Coulomb
P
~
4
_‘_.ENeighbour-search/\
GPU, MIC, ... SPH + Gravitation )
4 \& )

https://qitlab.jsc.fz-juelich.de/SLPP/pepc/pepc

https://zenodo.org/records/7965549
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https://gitlab.jsc.fz-juelich.de/SLPP/pepc/pepc
https://zenodo.org/records/7965549

Application highlight 1

Ab initio modeling of tokamak breakdown: dynamic particle populations

le-6 le-13
a) Current density J - 6 b) Internal B-field
-5 8
6 ~—
)
o
- 2
Early onset of magnetic flux tube
formation during breakdown , , L
A 6 4 5 6 7
p (m)

phase of ITER-scale tokamak. -
p (m
Chew, PG, D. Brommel, T. Wauters, Y. Gribov & P. de Vries, Nucl. Fusion (2024)
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https://doi.org/10.1088/1741-4326/ad0796

Application highlight 2

Diffused Vortex Hydrodynamics: PEPC-DVH simulation of ring with 1.3 M — 90 M particles
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https://doi.org/10.1016/j.matcom.2024.06.003

Mesh-free Darwin treecode
Z ¢V [ A~j + 1 —log (7% + 52)}
: i
V. E" = d7p
1 - x; — x;(1) [ x; — X; (1) }
o 10B - — A & X | v, x :
VxE l:_Ea_t c;% HIxi = x;(1)] T i = x5 ()]
o.n 47TJ+18EWT L lom E™ (xi) __W’ZQZQ? 2 +f~2
*BE IAZ:Y 7
[ 4 XJ X Vj
. B(x;) = =—=) 4j
Neglect EM radiation ) ; 3 5 +e’

* Formulation of 2D elliptic field solver + discrete, smoothed particles — O(N log N) tree code
« Point-particle result recovered for e—-0
« A & Es° are divergence-free by design
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Darwin code: 3D potentials

Vector potential:

& [v2, +€2 3 .
A(x;) = E:q;,*vo1 [ 3 + 53 sinh™ ('r@-j/&“)] +
J;ét 1/ T +€2 Tij Téj

1 X; —X; 3e? + T‘f- 3e? -1
+- > g [Vj - (xi - xj)] i [ = — o —sinh ('f‘afj/f?)]
¢ ; iy L2y r2 ez i
Corresponding magnetic field: » Recover point-particle result for e—=0
« V.A=0 by design
B(x;) = _‘Z (% —x;) 2;;’:; — o diyergence cleqning neces_sary! | |
CiEm o (i +e?) » Applications: magnetic reconnection, fusion devices,
plasma thrusters

M. Masek, PG, IEEE Trans. Plasma Sci. (2010)
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Integration scheme

Darwin fact of life: advancing fields via time differencing is forbidden!

Use canonical momenta instead of velocities:

m;c?

Yi

oL;

Pi - 8V?;

= M;YiVi T %A(Xz‘) L;=— — qip(x;) + %Vz’ - A(x;)

Then advance particle positions & momenta with semi-implicit ‘Asymmetric Euler Method’:

xPTh = x? + Atv?
1
PPt = PP + g At [ — Vit 4 EV(A?H : v?)]
L. Siddi, G. Lapenta, PG, Phys. Plasmas (2017)
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Integration scheme refinements

1. Improved Asymmetric Euler (IAEM, Christlieb, Sands & White, 2024)

pn+l — pn 4 th[VA"“ - v*]; i~ pttl & 2pn — pnt—1 Larmor convergence test (V@ = 0)

—8— Boris

100. —e— AEM

2. Midstep-Euler (MSEM) = o(A)
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A~
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3. Nielsen-Lewis implicit (NLIM, 1971) Lo-s
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Weibel instability benchmark
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F. F. Chen, 2" Ed. (1983)

Physical mechanism of the Weibel instability.

FIGURE 6-15
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Energy & momentum conservation

Weibel benchmark @ 3D colliding beam test
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Outlook: future projects

Neural operators as field solver Implicit integrators: novel fusion devices

(a)
@—» Fourier layer 1}—Fourier layer 2}—> @ @ @ —»{Fourier layer T

Fourier layer

Landau Damping Decay Rate, k=0.5

ub led from 100K
BRI ‘
e (AR, ]I
IABLAL % HIGARAYY
| N Time evolution (~ 3 ns) of dense plasma focus
* - itoarmzrliszedlfi.rone lj:lznsit: wp-t “e oo ioorm;[iszedlgi}:e tlfnS.t ;i.: e
PIC NeurL
Sriram Muralikrishnan, (Coupled Problems, 2025) Steve Lisgo, ELPIS Fusion
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Exascale alignment: GPU Strategy

 Hardware: 15t European Exaflop system JUPITER > June 2025

- 6000 Booster nodes with 4 GH200 superchips
- 72-core Grace CPU + Hopper GPU
- NVIink4 GPU-GPU data @ 150 GB/s

« Paradigm (portability vs performance): OpenACC, OpenMP, Kokkos, CUDA

« Two main strategies:
- Traversal on CPU; forces on GPU (ChaNGa 2015, FLASH4 2016)
- GPU traversal + force calculation on GPU (eg: Bonsai 2012, ChaNGa 2019)
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Summary

Open-source mesh-free framework PEPC for long-range N-body problems
https://qgitlab.jsc.fz-juelich.de/SLPP/pepc/pepc

Good scalability with hybrid MP1/OpenMP programming model

Darwin plasma model (2D & 3D) with robust (but imperfect!) integrator

Future enhancements:
- Fully implicit, structure-preserving integrator?
- Refactoring for CPU-GPU architectures
- Neural operator as field solver

Thanks to:

Dirk Brommel, Junxian Chew, Robert Speck, Sriram Muralikrishnan, Lorenzo Siddi, Matthias Winkel,
Benedikt Steinbusch, Martin Masek
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https://gitlab.jsc.fz-juelich.de/SLPP/pepc/pepc
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